

An innovative urban policy: The Payment for Insufficient Density (PID)

<u>Vincent Viguié (</u>CIRED) Paolo AVNER (CIRED) Stéphane Hallegatte (World Bank)

- Avner, Viguié, and Hallegatte. 2013. "Modélisation de l'effet d'une taxe sur la construction." Revue de l'OFCE N° 128 (2): 341–64.
- Avner, Viguié, and Hallegatte. 2014. "When taxing construction leads to more construction: modelling the impact of a land value tax on low density". To be published

unité mixte de recherche EHESS et CNRS - UMR 8568

JARDIN TROPICAL

45 BIS AVENUE DE LA BELLE GABRIELLE

94736 NOGENT-SUR-MARNE CEDEX - FRANCE

3/25/2014

Payment for Insufficient Density (from mid 2012 onwards in France)

- Part of French law (introduced in 2010 budget)
 - Objective: Limit urban sprawl and promote a less extensive usage of land
 - > Each mayor can tax new developments with insufficient density
 - define Minimum Density Thresholds (MDT): housing surface / land lot surface
 - It applies to construction permit holders

• PID is calculated as:
$$PID = \frac{Land Value}{2} \times \frac{S_{MDT} - S}{S_{MDT}}$$

- Half the m² ground land value x the missing housing surface so that the building reaches the Minimum Density Threshold
- Cannot exceed 25% of the land's value

2

3/25/2014

Implementation example

Cannot exceed 25% of the land's value

- Project: construction of a house of 160m²
 - ➤ Land lot: 800m², value 140 000€
 - ➢ MDT= 0.6

3

- MDT= 0.6 corresponds of housing surface area 480m² (S_{MDT})
 ➢ PID= 140000/2 * (480m²-160m²)/480m² = 46 666€
- However the PID cannot exceed 25% of the land's value which amounts to 35 000€

→ Therefore, the building permit holder will have to pay 35,000€ in PID

Implementation example

→ Therefore, the building permit holder will have to pay 35,000€ in PID

4

3/25/2014

3/25/2014

5

Avner, Viguié, Hallegatte

C.I.R.E.D. UNITÉ MIXTE DE RECHERCH EHESS ET CNRS - UMR 8568

Modelling urban form ?

Standard urban economics modelling (Alonso 1964, Mills 1967, Muth 1969)

3 mechanisms :

- 1. Households' tradeoff:
 - Lower transportation costs and shorter commuting time when living close to the city center, and
 - Larger dwellings and lower rent in remote areas
- 2. Investors optimize the housing density as a function of rents and construction costs
- 3. Different evolution timescales for rents, population density, buildings etc.

Simplifying hypotheses :

- All households have the same income.
- One trip per day towards the city center.
- > One city center

7

NEDUM-2D model

Avner, Viguié, Hallegatte

EHESS ET CNRS - UMR 8568

3/25/2014

8

10

Avner, Viguié, Hallegatte

Paris, 1990

3/25/2014

11

Avner, Viguié, Hallegatte

Paris, 1960

12

Avner, Viguié, Hallegatte

Paris, 1900

13

Avner, Viguié, Hallegatte

Model results: Rents (2008)

ET CNRS - UMR 8568

Model results: Rents (2008)

15

ESS ET CNRS - UMR 8568

Model results: Population density (2006)

. R. E. D. EHESS ET CNRS - UMR 856

Model results: Population density (2006)

The exercise we conducted

 Prospective simulation of the evolution of the urban area of Paris from 2000 to 2040

Introduction of the PID in 2012

- Definition of a unique MDT...
- That is applied in a homogeneous manner to the whole of the urban area

Comparison of the results with and without PID

Variation of housing density (MDT: 0.5)

19

3/25/2014

		Initial (2012)	Base (2040)	PID (2040)	Variation
mean monthly rent in the urban area (€/m²)		17,19	28,94	28,81	-0,46%
mean distance to the city center (km)		15,12	16,95	16,71	-1,44%
mean annual distance travelled by car (km/year)	6416	7429	7335	-1,26%
mean flat size (m ²)		74,7	75,6	76,0	0,59%
urbanized area (km²)		1573	1950	1866	-4,32%
built floor space surface (km²)		590	695	703	1,21%
percentage of access to public transport (%)		66,1%	61,8%	62,6%	1,32%
mean density in the urban area (hab/km²)		3416	3242	3388	4,51%

The PID seems to contribute non marginally to limiting urban sprawl

	_	Initial (2012)	Base (2040)	PID (2040)	Variation
mean monthly rent in the urban area (€/m²)		17,19	28,94	28,81	-0,46%
mean distance to the city center (km)		15,12	16,95	16,71	-1,44%
mean annual distance travelled by car (km/y	ear)	6416	7429	7335	-1,26%
mean flat size (m²)		74,7	75,6	76,0	0,59%
urbanized area (km²)		1573	1950	1866	-4,32%
built floor space surface (km ²)		590	695	703	1,21%
percentage of access to public transport (%)		66,1%	61,8%	62,6%	1,32%
mean density in the urban area (hab/km²)		3416	3242	3388	4,51%

The implementation of this tax on construction results in an increase of built m² and thus reduces the rents (or real estate prices) relative to a situation with no PID.

21

The importance of the Minimum Density Threshold choice

22

3/25/2014

Avner, Viguié, Hallegatte

EHESS ET CNRS - UMR 8568

 For MDTs that are too low, the implementation of a PID can prove counter-productive

23

 For MDTs that are too low, the implementation of a PID can prove counter-productive

24

 For MDTs that are too low, the implementation of a PID can prove counter-productive

- For MDTs that are too low, the implementation of a PID can prove counter-productive
- Depending on the criteria retained, the optimal MDT differs

26

MDT	0.2	0.3	0.4	0.5	0.6	0.7	0.8
Annual mean revenues of the PID (billion €)	0,13	0,88	1,58	2,08	2,50	2,83	3,01

- The annualised revenues vary from several hundred million euros to 3 billion depending on the MDT

- By comparison the land tax generates 4.3 billion euros for the whole of the Paris region

Conclusions

PID is a tax on construction that leads to:

- > an increase in built housing surfaces
- limiting urban sprawl
- > And does not increase rents (rather lowers them slightly)

The PID is a subtle tool as the MDT that should be chosen varies depending on the objective

However we supposed a unique MDT that would be applied everywhere in the urban area: not very realistic

Perspectives:

- > Modulate the MDT as a function of the distance to public transport stations
- > What is the impact of a modification of the PID limit (25% here)?
- > What happens when MDT are introduced with no overral coordination??

